Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production
نویسندگان
چکیده
BACKGROUND Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. RESULTS Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. CONCLUSION This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites.
منابع مشابه
Combining Genotype Improvement and Statistical Media Optimization for Isoprenoid Production in E. coli
Isoprenoids are a large and diverse class of compounds that includes many high value natural products and are thus in great demand. To meet the increasing demand for isoprenoid compounds, metabolic engineering of microbes has been used to produce isoprenoids in an economical and sustainable manner. To achieve high isoprenoid yields using this technology, the availability of metabolic precursors...
متن کاملIsoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.
Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eu...
متن کاملThe non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria.
Two plant test systems are presented in the search for new inhibitors of the non-mevalonate isoprenoid pathway. A derivative of clomazone appears to be an inhibitor of the deoxyxylulose 5-phosphate/methylerythritol 4-phosphate (DOXP/MEP) pathway of isoprenoid formation.
متن کاملEvidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis.
It is proposed that the lytB gene encodes an enzyme of the deoxyxylulose-5-phosphate (DOXP) pathway that catalyzes a step at or subsequent to the point at which the pathway branches to form isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A mutant of the cyanobacterium Synechocystis strain PCC 6803 with an insertion in the promoter region of lytB grew slowly and produced gre...
متن کاملA Synechococcus leopoliensis SAUG 1402-1 operon harboring the 1-deoxyxylulose 5-phosphate synthase gene and two additional open reading frames is functionally involved in the dimethylallyl diphosphate synthesis.
Experiments have been performed to prove the existence and the functionality of the novel mevalonate independent 1-deoxyxylulose 5-phosphate isoprenoid biosynthesis pathway in cyanobacteria. For this purpose, a segment of the 1-deoxyxylulose 5-phosphate synthase gene (dxs) was amplified from Synechococcus leopoliensis SAUG 1402-1 DNA via PCR using oligonucleotides for conserved regions of dxs. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2012